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LE'ITER TO THE EDITOR 

Self-consistent equations for critical exponents of the 
Grassmannian a-model 
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7 Research Institute for Theoretical Physics. University of Helsinki, Siltavuorenpenger 20 
C, SF-00170 Helsinki, Finland 
f Leningrad Nuclear Physics Institute, Gatchina. USSR 

Received 1 January 1991 

Abstract. A method of calculating the critical exponents based on skeleton self-consistent 
equations is used far calculation of the exponents Y and of a Grassmamian nonlinear 
w-model of symmetry G ( Z K ) / G ( K ) x G ( K )  with K = O .  These exponents are related to 
the conductivity and the participation ratio exponents at the mobility edge in the Anderson 
iocaiizaiion probiem. 

Some time ago a nonlinear u-model was proposed for the description of the Anderson 
transition [l]. In this model fields have values on Grassmannian manifolds 
G ( Z K ) / G ( K )  x G ( K ) ,  where G is the unitary, orthogonal or symplectic group and K 
is a number of replicas, which tends to zero eventually. The quantities (conductance, 
(inverse) participation ratio and so on), which distinguish between the regime of 
localized and extended states are connected with relevant scaling operators of the 
u-model. Calculations of their critical exponents in the framework of an e-expansion 
[2,3] show that the higher-order corrections are important. For instance, the E- 

expansion of the exponent U yields U = 0.37 (at d = 3), which is too small, since it 
violates the inequality v 2 / d  proved for disordered systems [4]. Most probably, the 
usual technique of the &-expansion must be significantly modified for Grassmannian 
u-models [3,5]. Therefore it  would be useful t o  study these u-models by other methods. 

In the present letter we calculate the critical exponents of the Grassmannian 
u-models by the method of self-consistent equations 167. This method has been used 
for calculations of the critical exponents [7-9] of the scalar nonlinear U-model. 

Exactly at the critical point all Green functions are scale invariant, so a propagator 
has a simple power-law behaviour. For instance, in coordinate space a scalar propagator 
is of the form G(x) = A/Ix/'". The unknown exponent a is determined by skeleton 
equations for propagators and vertices without bare terms [6-91. These equations 
contain infinite sums of skeleton diagrams. Sometimes their solutions can be found as 
a series in some parameter. In the case of the O ( N )  u-model such a parameter is 1/N. 
,,,c cllllral snpUr,r,n 7 U. L1.b V,'., V- I I IUUVI #la> "rF.1 Ca_ICUIaIFU "p L U  UlUIjl I ,  I T  

in such a way [9]. For the Grassmannian u-model with zero number of replicas there 
is no such parameter. However, we may exploit the fact that terms of self-consistent 
equations are functions of the critical exponents. In particular they depend on vertex 
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anomalous dimensions (e.g. K = (1/ u ) + ? - d  - q ) ,  which are assumed to be small. 
Therefore we replace each term of the equations by its leading order approximation 
in these parameters. For models of the Anderson transition recent numerical calcula- 
tions of the exponent U [lo] yield values close to 1 (u=0.9*0.3  for the Gauss 
distribution, and U = 1.4k0.2 for the box distribution). So one may hope that K = 
( l / u ) + Z - d - v  is indeed numerically small at d = 3 .  

The scalar nonlinear m-model is described by the Lagrangian 

where + O  are boson fields (a = 1, .  . . , N )  with the constraint +"(x)+"(x) = N. 
Introducing an auxiliary field Jr one obtains the equivalent model with the Lagrangian 

L'=-;(J+)'+&r(+'- t N )  

where there are no constraints on the fields. 
As mentioned above, at  the critical point there is a system of self-consistent equations 

for the dressed propagators D,, D+ and the vertex V,,,. These equations are depicted 
in figure 1, where the straight lines denote the propagator D,, and the wavy line D,. 
In the coordinate space the arrow pointing from x to y corresponds to the vector 
( y - x ) .  The shaded boxes in the Dyson equations for propagators denote the kernels 
of the Bethe-Salpeter equation. 

According to the scaling hypothesis all Green functions in the critical region are 
scale invariant. The scale invariance determines the propagators up to constant ampli- 
tudes, which can be chosen equal to 1 by the normalization conditions of the fields 

I d )  

Figure 1. Self-cansirtentequatians: (a) notation; ( b )  veRex equation; ( c )  Dyson equations; 
( d )  Bethe-Salpeter kernels and their relations with the venex. 
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The inverse propagators also have a power-law behaviour: 

Here we use the notation 

and p = d/2. The exponents a and p are related to the conventional ones Y and 7 via 

1 
a = p - l + -  p = 2 - 7 - K  -=2p-p .  

2 Y 

The dressed vertex V,,,(y, x, x') is scale invariant; hence 

where Z is a constant. If there is the conformal invariance at critical point, then the 
three-point vertex is determined up to a constant. This fact was used in [9], hut here 
we do not use it since the conformal invariance is not evident for the Grassmannian 
u-model at the critical point. Integrating the vertex equation over one coordinate we 
obtain the skeleton equation given in figure 2, where the cross denotes the integration 
over the coordinates of the corresponding point. It is easy to see that the graphs on 
the RHS of this equation diverge when K tends to zero: these graphs have poles in  K. 

The first three-vertex graph can be easily calculated in the leading pole approximation 
( K  + 0) using the technique of coordinate integrations [8,9]. In this approximation the 
equation for the dressed vertex takes the form 

We see that Z = O ( K " ~ )  and we can neglect graphs with more than three vertices in 
the leading order of the K-expansion. This holds for the Dyson equations, too. 
Performing the K-expansion on the R H S  of these equations for propagators we obtain 
in the leading order 

fb l  

Figure 2. Auxiliary vertex equation: ( 0 )  the vertex equation integrated overthe coordinates 
of the *-point; ( b )  the three-vertex term in the leading approximation. 
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We have three transcendental equations for three unknown variables 7, K and Z. 
Expanding the function p ( B )  in K we obtain from (2): 

z2= Q ( 7 ) K 3  

(3) 
2 P ( 2  - 7) 

n ~ ( 7 ) - 2 ~ ( 2 - 7 ) ( B ( 2 - 7 ) -  B ( 2 6  -2+ 7)) 
K = -  

2 p ( 2 - 7 )  P(6-1fl) n Q ( 7 ) - 2 p ( 2 - 7 ) ( B ( 2 - 7 ) -  B ( 2 p  - 2 + 7 ) )  

where 

w 

B ( x ) =  J I ( x ) + J I ( P  -XI J I ( x ) = , ~ o ~ ~ ( x ) .  

= -2?rz'a(p - 1+7/2)2a(2- 7) 

d 

For the case of the 3~ king model ( N  = 1, p =:) we obtain from (3) 7 =6.1 x 
K =0.2, U = 0.79, Z 2  = 7.4 X lo-'. For the 3~ Heisenberg model (N = 3, p =;) we have 
1) =4.3 x lo-', K = 0.14, Y = 0.84, Z 2  = 7 . 4 ~  In the framework of the high- 
temperature expansion, calculations [ 111 yield for these quantities the following values: 
~=0.055*0.010, v=0.638*0.002 in the case of the 3~ lsing model, and 7 =  
0.0410.003, Y = 0.71 f 0.02 for the 3~ Heisenberg model. It can be seen that our values 
of the exponent 7 are in a good agreement with the numerical results of [l l] .  As to 
the exponent U our results are about 20% more than the corresponding values of Y in 
[ll]. Our estimations show that the self-consistent equations in the next-to-leading 
order of the K-expansion have solutions for exponents which are in better agreement 
with the exponents calculated in [ll]. 

The Grassmannian u-model with the unitary (orthogonal) symmetry is defined by 
the Lagrangian: 

1 
21 

L =  -- tr(J,Qd,Q) 

where Q(x) is a Hermitian (symmetric) K x K matrix with the constraints fr Q(x)=O 
and Q ( x ) ~ =  1 .  We are interested in critical exponents of this model with K =O. Let 
us parametrize the matrix Q(x) in the following way: 

" ( K )  

',=I 
a x ) =  .I ,$"I" 

where r' is a complete set of the traceless Hermitian (symmetric) matrices such that 
tr(t"rb)=Srb, n ( K ) =  K 2 - l ( ( K 2 + K  - 2 ) / 2 ) .  In this parametrization the constraints 
on Q(x) take the form: 

,$a4' = K = 0. 

Here dabL=tr(r'[fb, t'J+). Introducing auxiliary fields JI" and p we obtain the 
Lagrangian of the equivalent model 

L'= - f (J4 )2+fd .bc l l ) ' 4b4c+tP(~2-  tK) 
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without any constraints on the fields. At the critical point its dressed propagators can 
be chosen in the form: 

The exponents (Y, y and p are related to q, v (exponent of the correlation length) and 
s (exponent of the conductivity) via 

LY=p-l+- ’ P=2-1) -K y = 2 -  q -x 
2 

1 
- = 2 p - p  s = (2p - 2 )  v. 
Y 

Here K and ,y are the anomalous dimensions of the dressed vertices V,,,, V,++ 
respectively. As in the case of the O ( N )  u-model we solved the skeleton self-consistent 
equations for the dressed propagators D+, D,,, D, and vertices V,,,, V,,, in the 
leading approximation of the ( K ,  X)-expansion. Using the relations 

d,,dh, = f i b  doC,dhtdq, =fzd.+x 

where f , = 2 ( K - 4 / K ) ,  h = ( K - l 2 / K )  for the Hermitian case, and f,= 
2(1+K/2-4/K),  f 2 = ( 2 + K / 2 - 1 2 / K )  for the symmetric case, we obtain five 
equations for the exponents K, q. ,y and for two amplitudes Z, ,  Z, similar to 2 in (1). 
These equations are of the form: 

P ( P  - 1 +;) = - [ x2+7f2] z: z: 

Zi.6 
P ( Z - ~ ) [ I + ~ ( B ( ~ ~ - ~ +  ~ ) - B ( ~ - V ) ) J = - ~ .  

2x  
In this approximation at K = O  we have a degeneracy of the exponents for models 
with the unitary and orthogonal symmetries. The degeneracy is lifted in next to leading 
orders of the (~,x)-expansion.  The results of our calculations are ’1 =0.11 (0.3+0.3 
[12]), ~ = 0 . 4 , ~ = 0 . 2 8 ,  v=s=0 .66 .  

The results obtained allow us to hope that the method of self-consistent equations 
can be effective for the study of the critical behaviour at the Anderson transition from 
the insulating to the conducting phase. This method yields quite reasonable values of 
the exponents from the point of view of the constraint u > 2 / d  [4] already in the 
leading approximation of the (~,x)-expansion.  We intend to calculate the value of v 
in next-to-leading approximation of the (K, X)-expansion and hope that the inequality 
mentioned above wiii be satisfied. 

We considered the regime without mixing (mixed propagator D,+ = 0). If Dyld # 0, 
then there is no conformal invariance in the theory. In this case the conformal bootstrap 
method is useless for solving self-consistent equations, but one can calculate the critical 
exponents in the fashion described above for this regime, too. Preliminary calculations 
show that the $+-mixing is not possible at K = 0 replicas. 
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